日本精久视频69视频在线播放_国产精品狼人色视频一区_1024手机基地你懂的日韩人妻_急救护士美国满天星全名_亚洲狼人香蕉香蕉在线28_亚洲一级电影在线观看_国产a国产高清免费_亚洲情s网站大全_日韩美女日批爽爽爽_欧美三级一区二区在线观看

您好,歡迎光臨上海雅吉生物商城!
工作時間:9:00-18:00
全國服務(wù)熱線:021-34661276

β-肌動蛋白/β-Actin(內(nèi)參)抗體

訂購數(shù)量:
規(guī)格
價格庫存
訂購熱線:021-34661276
我要詢價
  • 商品詳情
  • 售后服務(wù)
  • 相關(guān)文獻(xiàn)

產(chǎn)品編號bs-0061R
英文名稱Rabbit Anti-beta-Actin (Loading Control) antibody
中文名稱β-肌動蛋白/β-Actin(內(nèi)參)抗體
別    名Beta Actin; beta-Actin; ACTB; Actin cytoplasmic 1; Actin, beta; Beta actin; beta cytoskeletal actin; A X actin like protein; ACTB; Actin cytoplasmic 1; alpha sarcomeric Actin; Actx; Beta cytoskeletal actin; Melanoma X actin; PS1TP5BP1; ACTB_HUMAN.  β actin; βactin;
Specific References  (1140)     |     bs-0061R has been referenced in 1140 publications.
[IF=3.192]   WB ;  Pig.  
[IF=4.087]   WB ;  Rat.  
[IF=20.042] Xiang-Qian Gao. et al. The piRNA CHAPIR regulates cardiac hypertrophy by controlling METTL3-dependent N 6 -methyladenosine methylation of Parp10 mRNA. Nat Cell Biol. 2020 Oct;22(11):1319-1331  WB ;  Mouse.  
[IF=19.227] Xin Zhou. et al. ACSL4 promotes microglia-mediated neuroinflammation by regulating lipid metabolism and VGLL4 expression. BRAIN BEHAV IMMUN. 2023 Mar;109:331  WB ;  Mouse.  
[IF=18.027] Nguyen Thi Nguyen. et al. Amplified Fenton-Based Oxidative Stress Utilizing Ultraviolet Upconversion Luminescence-Fueled Nanoreactors for Apoptosis-Strengthened Ferroptosis Anticancer Therapy. ACS NANO. 2022;XXXX(XXX):XXX-XXX  WB ;  Mouse.  
[IF=16.744] Rui Liu. et al. Engineered stem cell biomimetic liposomes carrying levamisole for macrophage immunity reconstruction in leukemia therapy. CHEM ENG J. 2022 Nov;447:137582  WB ;  Rat.  
[IF=15.84] Xiaolie He. et al. MgFe‐LDH Nanoparticles: A Promising Leukemia Inhibitory Factor Replacement for Self‐Renewal and Pluripotency Maintenance in Cultured Mouse Embryonic Stem Cells. 2021 Feb 25  WB ;  Mouse.  
[IF=15.304] Yao Lei. et al. Phytochemical natural killer cells reprogram tumor microenvironment for potent immunotherapy of solid tumors. BIOMATERIALS. 2022 Jun;:121635  WB ;  Mouse.  
[IF=14.976] Qinyu Ma. et al. Small extracellular vesicles deliver osteolytic effectors and mediate cancer‐induced osteolysis in bone metastatic niche. J Extracell Vesicles. 2021 Feb;10(4):e12068  WB ;  Mouse.  
[IF=14.903] Shuai Xiong. et al. Glutamate-releasing BEST1 channel is a new target for neuroprotection against ischemic stroke with wide time window. ACTA PHARM SIN B. 2023 May;:  WB ;  Mouse.  
[IF=14.26] Mi Bai. et al. LONP1 targets HMGCS2 to protect mitochondrial function and attenuate chronic kidney disease. EMBO MOL MED. 2023 Jan 11  WB ;  Mouse.  
[IF=14.026] Congcong Chen. et al. Radix Paeoniae Alba attenuates Radix Bupleuri-induced hepatotoxicity by modulating gut microbiota to alleviate the inhibition of saikosaponins on glutathione synthetase. J PHARM ANAL. 2023 Apr;:  WB ;  Rat.  
[IF=13.273] Danmin Lin. et al. Brain-targeted gene delivery of ZnO quantum dots nanoplatform for the treatment of Parkinson disease. Chem Eng J. 2022 Feb;429:132210  WB ;  Human.  
[IF=13.273] Long Zhao. et al. Juglone-loaded metal-organic frameworks for H2O2 self-modulating enhancing chemodynamic therapy against prostate cancer. Chem Eng J. 2022 Feb;430:133057  WB ;  Human.  
[IF=13.273] Xinkun Shen. et al. Improvement of aqueous stability and anti-osteoporosis properties of Zn-MOF coatings on titanium implants by hydrophobic raloxifene. Chem Eng J. 2021 Oct;:133094  WB ;  Mouse.  
[IF=12.336] Baikai Ma. et al. Pigment epithelium-derived factor (PEDF) plays anti-inflammatory roles in the pathogenesis of dry eye disease. Ocul Surf. 2021 Apr;20:70  WB ;  Human.  
[IF=11.556] Wen-juan Jiang. et al. Tubular epithelial cell-to-macrophage communication forms a negative feedback loop via extracellular vesicle transfer to promote renal inflammation and apoptosis in diabetic nephropathy. Theranostics. 2022; 12(1): 324–339  WB ;  Mouse,Human.  
[IF=11.48] Lan, Feng, et al. "Forkhead box protein 3 in human nasal polyp regulatory T cells is regulated by the protein suppressor of cytokine signaling 3." Journal of Allergy and Clinical Immunology 132.6 (2013): 1314-1321.  WB ;  Human.  
[IF=11.33] Leclercq, Sophie, et al. "Low-dose penicillin in early life induces long-term changes in murine gut microbiota, brain cytokines and behavior." Nature Communications 8 (2017): 15062.  WB ;  Mouse.  
[IF=11.161] Zhipeng Jiang. et al. EIF4A3-induced circ_0084615 contributes to the progression of colorectal cancer via miR-599/ONECUT2 pathway. J Exp Clin Canc Res. 2021 Dec;40(1):1-15  WB ;  Human.  
[IF=10.787] Xiaozhen Dai. et al. Nrf2 transcriptional upregulation of IDH2 to tune mitochondrial dynamics and rescue angiogenic function of diabetic EPCs. REDOX BIOL. 2022 Oct;56:102449  WB ;  Mouse.  
[IF=10.787] Yi Zhao. et al. Ferroptosis is critical for phthalates driving the blood-testis barrier dysfunction via targeting transferrin receptor. REDOX BIOL. 2023 Feb;59:102584  WB ;  Mouse.  
[IF=10.753] Fangwei Yang. et al. Diethyl phosphate disrupts hypothalamus-pituitary-adrenal axis endocrine hormones via nuclear receptors GR and Nur77: Integration of evidences from in vivo, in vitro and in silico approaches. SCI TOTAL ENVIRON. 2022 Oct;844:157015  WB ;  Rat, Human.  
[IF=10.753] Ya-Nan Gao. et al. Aflatoxin M1 and ochratoxin A induce a competitive endogenous RNA regulatory network of intestinal immunosuppression by whole-transcriptome analysis. SCI TOTAL ENVIRON. 2022 Sep;:158777  WB ;  Human.  
[IF=10.75] Hu Yifang. et al. S100 Calcium Binding Protein A16 Promotes Cell Proliferation by triggering LATS1 ubiquitin degradation mediated by CUL4A ligase to inhibit Hippo pathway in Glioma development. INT J BIOL SCI. 2023 Apr;19(7):2034-2052  WB ;  Human.  
[IF=10.383] Zhen Xu. et al. Green Biosynthesis of Silver Nanoparticles Using Aqueous Extracts of Ageratum Conyzoides and Their Anti-Inflammatory Effects. ACS APPL MATER INTER. 2023;XXXX(XXX):XXX-XXX  WB ;  Mouse,Human.  
[IF=10.19] Xianqiang Li. et al. Menthol nanoliposomes enhanced anti-tumor immunotherapy by increasing lymph node homing of dendritic cell vaccines. CLIN IMMUNOL. 2022 Sep;:109119  WB ;  Mouse.  
[IF=10.171] Ping Pang. et al. The circular RNA circHelz enhances cardiac fibrosis by facilitating the nuclear translocation of YAP1. TRANSL RES. 2023 Feb;:  WB ;  Mouse.  
[IF=9.933] Xingyi Xu. et al. A Honeycomb-Like Bismuth/Manganese Oxide Nanoparticle with Mutual Reinforcement of Internal and External Response for Triple-Negative Breast Cancer Targeted Therapy. 2021 Jul 23  WB ;  Human.  
[IF=9.918] Jie Hao. et al. Multifunctional miR181a nanoparticles promote highly efficient radiotherapy for rectal cancer. MATER TODAY ADV. 2022 Dec;16:100317  WB ;  Mouse.  
產(chǎn)品類型內(nèi)參抗體 
研究領(lǐng)域腫瘤  細(xì)胞生物  信號轉(zhuǎn)導(dǎo)  細(xì)胞骨架  
抗體來源Rabbit
克隆類型Polyclonal
交叉反應(yīng)Hamster,Rat,Mouse,Human (predicted: GuineaPig,Cat,Fish,Bee,Sheep,Rabbit,Pig,Dog,Chicken)
產(chǎn)品應(yīng)用WB=1:5000-50000, ICC=1:100, Flow-Cyt=1μg/Test, ELISA=1:5000-20000
not yet tested in other applications.
optimal dilutions/concentrations should be determined by the end user.
理論分子量42kDa
細(xì)胞定位細(xì)胞漿 
性    狀Liquid
濃    度1mg/ml
免 疫 原Synthetic MAP peptide derived from human beta-Actin: 1-200/375 
亞    型IgG
純化方法affinity purified by Protein A
緩 沖 液0.01M TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol.
保存條件Shipped at 4℃. Store at -20 °C for one year. Avoid repeated freeze/thaw cycles.
注意事項This product as supplied is intended for research use only, not for use in human, therapeutic or diagnostic applications.
PubMedPubMed
產(chǎn)品介紹Loading Control
This gene encodes one of six different actin proteins. Actins are highly conserved proteins that are involved in cell motility, structure, and integrity. This actin is a major constituent of the contractile apparatus and one of the two nonmuscle cytoskeletal actins. [provided by RefSeq, Jul 2008].

Function:
Actins are highly conserved proteins that are involved in various types of cell motility and are ubiquitously expressed in all eukaryotic cells.

Subunit:
Polymerization of globular actin (G-actin) leads to a structural filament (F-actin) in the form of a two-stranded helix. Each actin can bind to 4 others. Identified in a mRNP granule complex, at least composed of ACTB, ACTN4, DHX9, ERG, HNRNPA1, HNRNPA2B1, HNRNPAB, HNRNPD, HNRNPL, HNRNPR, HNRNPU, HSPA1, HSPA8, IGF2BP1, ILF2, ILF3, NCBP1, NCL, PABPC1, PABPC4, PABPN1, RPLP0, RPS3, RPS3A, RPS4X, RPS8, RPS9, SYNCRIP, TROVE2, YBX1 and untranslated mRNAs. Component of the BAF complex, which includes at least actin (ACTB), ARID1A, ARID1B/BAF250, SMARCA2, SMARCA4/BRG1, ACTL6A/BAF53, ACTL6B/BAF53B, SMARCE1/BAF57 SMARCC1/BAF155, SMARCC2/BAF170, SMARCB1/SNF5/INI1, and one or more of SMARCD1/BAF60A, SMARCD2/BAF60B, or SMARCD3/BAF60C. In muscle cells, the BAF complex also contains DPF3. Found in a complex with XPO6, Ran, ACTB and PFN1. Component of the MLL5-L complex, at least composed of MLL5, STK38, PPP1CA, PPP1CB, PPP1CC, HCFC1, ACTB and OGT. Interacts with XPO6 and EMD. Interacts with ERBB2.

Subcellular Location:
Cytoplasm. cytoskeleton.

Tissue Specificity:
Ubiquitously expressed in all eukaryotic cells.

Post-translational modifications:
ISGylated.
Oxidation of Met-44 by MICALs (MICAL1, MICAL2 or MICAL3) to form methionine sulfoxide promotes actin filament depolymerization. Methionine sulfoxide is produced stereospecifically, but it is not known whether the (S)-S-oxide or the (R)-S-oxide is produced.

DISEASE:
Defects in ACTA1 are the cause of nemaline myopathy type 3 (NEM3) [MIM:161800]. A form of nemaline myopathy. Nemaline myopathies are muscular disorders characterized by muscle weakness of varying severity and onset, and abnormal thread-or rod-like structures in muscle fibers on histologic examination. The phenotype at histological level is variable. Some patients present areas devoid of oxidative activity containg (cores) within myofibers. Core lesions are unstructured and poorly circumscribed.
Defects in ACTA1 are a cause of myopathy congenital with excess of thin myofilaments (MPCETM) [MIM:161800]. A congenital muscular disorder characterized at histological level by areas of sarcoplasm devoid of normal myofibrils and mitochondria, and replaced with dense masses of thin filaments. Central cores, rods, ragged red fibers, and necrosis are absent.

Similarity:
Belongs to the actin family.

SWISS:
P60709

Gene ID:
60

Database links:

Entrez Gene: 396526 Chicken

Entrez Gene: 60 Human

Entrez Gene: 11461 Mouse

Entrez Gene: 100009272 Rabbit

Entrez Gene: 81822 Rat

Omim: 102630 Human

SwissProt: P60706 Chicken

SwissProt: P60712 Cow

SwissProt: P60708 Horse

SwissProt: P60709 Human

SwissProt: P60710 Mouse

SwissProt: P29751 Rabbit

SwissProt: P60711 Rat

SwissProt: P60713 Sheep

Unigene: 520640 Human

Unigene: 708120 Human

Unigene: 727576 Human

Unigene: 328431 Mouse

Unigene: 391967 Mouse

Unigene: 94978 Rat



內(nèi)參抗體
β-Actin是橫紋肌肌纖維中的一種主要蛋白質(zhì)成分,也是肌肉細(xì)絲及細(xì)胞骨架微絲的主要成分。具有收縮功能,分布廣泛,具有高度保守性,在細(xì)胞中的表達(dá)相對穩(wěn)定,因此常被用作校正系統(tǒng)的內(nèi)參。β-Actin分子量為42 kDa,
此抗體主要用于標(biāo)記平滑肌及其來源的腫瘤。
我公司開發(fā)的β-Actin抗體已被國內(nèi)外廣大科研工作者使用,被稱為質(zhì)量信得過產(chǎn)品.
產(chǎn)品圖片
Sample:
SH-SY5Y (Human) Lysate at 40 ug
Primary:
Anti-beta-Actin (bs-0061R) at 1/2000~1/20000 dilution
Secondary: IRDye800CW Goat Anti-Rabbit IgG at 1/20000 dilution
Predicted band size: 42 kD
Observed band size: 42 kD

Sample:Embryo Cerebrum (Mouse) Lysate at 40 ugDu145 (Human) Lysate at 40 ugSW480 (Human) Cell Lysate at 40 ugU87MG (Human) Lysate at 40 ugU251 (Human) Lysate at 40 ugA673 (Human) Lysate at 40 ugLovo (Human) Lysate at 40 ug293FT (Human) Lysate at 40 ugJEG-3 (Human) Lysate at 40 ugRSC96 (Rat) Cell Lysate at 40 ugMCF-7 (Human) Cell Lysate at 40 ugHepG2 (Human) Lysate at 40 ugA431 (Human) Lysate at 40 ugPrimary: Anti-beta-Actin (bs-0061R) at 1/2000 dilutionSecondary: IRDye800CW Goat Anti-Rabbit IgG at 1/20000 dilutionPredicted band size: 42 kDObserved band size: 42 kD

Tissue/cell: Hela cell; 4% Paraformaldehyde-fixed; Triton X-100 at room temperature for 20 min; Blocking buffer (normal goat serum, C-0005) at 37°C for 20 min; Antibody incubation with (beta-Actin) polyclonal Antibody, Unconjugated (bs-0061R) 1:100, 90 minutes at 37°C; followed by a conjugated Goat Anti-Rabbit IgG-FITC antibody at 37°C for 90 minutes, DAPI (blue, C02-04002) was used to stain the cell nuclei.
MCF7 cell; 4% Paraformaldehyde-fixed; Triton X-100 at room temperature for 20 min; Blocking buffer (normal goat serum, C-0005) at 37°C for 20 min; Antibody incubation with (beta-Actin) polyclonal Antibody, Unconjugated (bs-0061R) 1:100, 90 minutes at 37°C; followed by a conjugated Goat Anti-Rabbit IgG antibody at 37°C for 90 minutes, DAPI (blue, C02-04002) was used to stain the cell nuclei.
Blank control: NIH/3T3.
Primary Antibody (green line): Rabbit Anti-beta-Actin (Loading Control) antibody (bs-0061R)
Dilution: 1μg /10^6 cells;
Isotype Control Antibody (orange line): Rabbit IgG .
Secondary Antibody : Goat anti-rabbit IgG-AF488
Dilution: 1μg /test.
Protocol
The cells were fixed with 4% PFA (10min at room temperature)and then permeabilized with 90% ice-cold methanol for 20 min at -20℃. The cells were then incubated in 5%BSA to block non-specific protein-protein interactions for 30 min at room temperature .Cells stained with Primary Antibody for 30 min at room temperature. The secondary antibody used for 40 min at room temperature. Acquisition of 20,000 events was performed.
我要詢價
*聯(lián)系方式:
(可以是QQ、MSN、電子郵箱、電話等,您的聯(lián)系方式不會被公開)
*內(nèi)容:


微信客服
掃一掃立即咨詢


微信客服
掃一掃立即咨詢

銷售電話:

021-34661275

021-34661276

15301693058